FLOOD & DROUGHT MANAGEMENT TOOLS

Volta

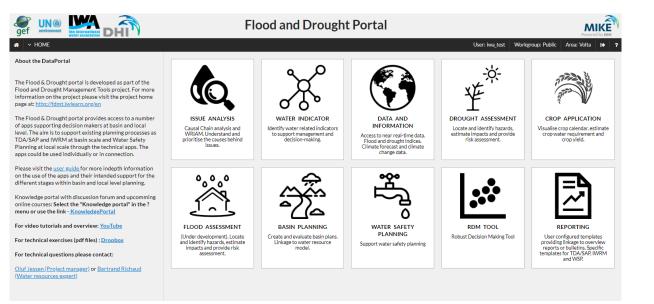
*- :

HOW CAN I BETTER PLAN FOR FLOODS AND DROUGHTS?

Contacts: Oluf Zeilund Jessen, DHI ozj@dhigroup.com

Katharine Cross, International Water Association (IWA) Katharine.cross@iwahq.org

Chao Phraya


About the Flood and Drought Management Tools project - Why?

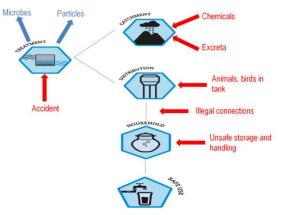
Increasing frequency, unpredictability and severity of flood and drought events. A need for adaptive planning and management of water resources at basin and local level

About the Flood and Drought Management Tools project - How?

- Developed **webbased tools to support planning** and decisions to address flood and drought risks from transboundary basin level to water utilities
- Freely available to all users

www.flooddroughtmonitor.com

Support for basin and water utility planning



Transboundary Diagnostic Analysis / Strategic Action Programmes – Tools developed by the Global Environment Facility to assess the state of transboundary basins, and prioritise actions to address key threats.

Integrated Water Resources Management – A process of planning that integrates the management of water, land and other related resources for improved sustainability.

Water Safety Plans – A comprehensive risk assessment that address health related risks and provide an analysis of all steps in the water supply from catchment to consumer.

Urban Water Safety Planning - WHO, Regional Office for South-East Asia 2015

About the Flood and Drought Management Tools project – Who?

Implemented by UN Environment; Executed by DHI and IWA over 4 years. End users are water resource agencies/basin organisations and water utilities.

About the Flood and Drought Management Tools project – Where?

Global applicability, portal and its applications have been developed and tested with stakeholders across 3 pilot basins

Danube and Nile Basin as learning basins

Table

Rainfall (TRMM) - All focus area - Monthly accumulated values

☆ DATA AND INFORMATION		Time	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Avg.	Min.	Max.	^ ?
Data x Document	111	2000			28.4	94.9	153.6	163.9	158.0	211.9	228.9	193.2	7.8	0.2	124.1	0.2	228.9	1) 🛪
	Status CIS lava	2001	3.5	1.4	72.3	44.9	169.9	161.0	189.5	254.8	222.2	159.0	20.4	3.2	108.5	1.4	254.8	
Select	Status GIS laye	2002	7.5	4.5	19.1	54.7	193.2	174.5	143.5	295.0	291.5	205.9	84.5	46.5	126.7	4.5	295.0	ı/d
Rainfall (TRMM) □		2003	1.0	18.7	77.1	49.6	92.7	200.5	224.4	185.2	294.0	89.1	1.1	1.4	102.9	1.0	294.0	
		2004	6.7	7.1	8.9	44.7	207.3	210.0	232.7	149.9	302.0	33.7	12.5	0.4	101.3	0.4	302.0	
		2005	1.7	5.5	21.2	84.7	161.8	195.0	234.7	219.4	320.5	111.5	113.4	10.4	123.3	1.7	320.5	
		2006	0.4	12.0	46.4	93.3	178.0	181.8	216.3	284.8	252.3	158.7	6.4	0.6	119.2	0.4	284.8	
		2007	1.2	6.4	20.4	75.0	205.1	232.4	174.3	250.1	258.8	197.0	6.7	0.1	119.0	0.1	258.8	
Effective flood Index (EFI)		2008	2.0	6.1	33.9	111.1	139.7	225.6	215.2	247.9	307.9	239.7	71.5	14.9	134.6	2.0	307.9	
Tool		2009	0.3	7.0	78.1	77.2	186.5	220.5	194.7	257.7	254.6	184.2	10.3	0.3	122.6	0.3	257.7	
Time series		2010	12.7	4.0	13.0	34.9	112.6	217.3	290.7	360.6	324.7	207.6	0.8	12.5	132.6	0.8	360.6	
Time series (monthly)		2011	0.9	24.8	60.8	104.5	220.8	234.9	279.4	295.6	357.4	128.9	3.4	2.8	142.9	0.9	357.4	6
🗹 Table		2012	6.5	12.1	36.9	62.0	196.5	135.5	246.8	246.8	330.9	115.7	104.5	8.0	125.2	6.5	330.9	
Raster file		2013	11.8	9.5	19.4	51.0	141.6	240.0	231.3	268.6	299.7	125.2	36.7	11.6	120.5	9.5	299.7	
Area		2014	0.1	0.4	22.6	100.1	172.8	146.6	198.1	311.4	282.2	114.4	90.1	0.9	120.0	0.1	311.4	m/d
All focus area		2015	4.0	9.9	82.2	48.9	114.1	132.2	230.0	232.1	226.3	136.8	56.2	18.7	107.6	4.0	232.1	-
🕹 Dov	wnload 🖽 Table				TT A			LOPBUR		NAKHON RATCHASII	BURI	RAM	R	UBON ATCHATHAN	Hakse Muang Champassaka บายาสภ	Dong H Sao Nati Bio-Diver	onal sity	Dpacity % 100 ▼
					Dawei ကားဝယ်			SAR	PRACI	HIN BURE	2-1	PT		Prum Vildlife			achey nal Park	Kon Tu Pleiki
100.54688, 14.03001 2001	2003	2005		2007		009	2011		2013		2015	20:	17		2018-10-22	2 ◀▶	78 018 Google	Terms of Us

www.flooddroughtmonitor.com

Design: www.chris-wells.com

х 🔊

Hydro and Agro Informatics Institute

Ministry of Science and Technology Thailand

Using the Flood and Drought Management Tools in Thailand

Ticha Lolupiman Model Developer Hydro and Agro Informatics Institute, Thailand

What are your symptoms? How can we help cure you?

To get started with the tools right now, register for free by visiting

www.flooddroughtmonitor.com

For more information, contact

DHI, Oluf Zeilund Jessen ozj@dhigroup.com IWA, Katharine Cross katharine.cross@iwahq.org

Or learn more at

fdmt.iwlearn.org

Design: www.chris-wells.com

Discussion Questions

General questions:

- What are you main concerns in relation to climate change/variability?
- How do you address your present challenges?
- How do you address expected future concerns in your planning?
- Do you see some of the applications of the F&D portal as potential tools for your present or future work?

Some specific questions related to HAII experience:

- Are you missing any regular report about the climatic/drought situation in your basin?
- Are you missing access to near real-time climate and drought relate information?